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Internal waves in a sheeted thermocline 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physics, University of California, La Jolla 

(Received 24 September 1971) 

The eigenvalue problem for internal waves in a thermocline for which the density 
profile may exhibit h i t e  discontinuities is formulated as a homogeneous Fred- 
holm integral equation. The corresponding quadratic functional yields both 
upper and lower bounds for the dominant-mode eigenvalue and lower bounds 
for the remaining eigenvalues (which are proportional to the square of the wave 
speed) for any value of the wavenumber. The lower bounds based on simple 
trial functions appear to provide adequate approximations for typical density 
profiles and all wavenumbers. The upper bound (which is based on a Schwarz 
inequality and does not require the choice of a trial function) is sharp only for 
relatively long waves. A simple approximation is developed for the effect of the 
free surface on the dominant mode. Two algebraic formulations are given for 
a thermocline of homogeneous layers separated by a finite number of sheets, 
across each of which the density is discontinuous. The various approximations 
are compared with the exact results for a thermocline with a hyperbolic-tangent 
density profile, a three-sheeted thermocline, and a five-sheeted model of the 
summer thermocline in the Mediterranean. 

1. Introduction 
It now appears to be established that typical summer (and perhaps most) 

thermoclines have a step-like structure, comprising a series of Zuyers, in which 
the temperature changes gradually, separated by thin sheets, across which the 
temperature changes sharply (see, e.g. Woods 1968). The usual formulation of 
the internal-wave problem, in terms of a differential equation and associated 
boundary conditions, and especially its solution through the WKB approxima- 
tion, assumes that the density (or temperature) gradient is a smooth function 
of depth; accordingly, it  is not well suited to such a thermocline. We develop 
here an integral-equation formulation that leads directly to variational approxi- 
mations for the wave speeds of the more important modes and is applicable to 
any density profile that is piecewise continuous. 

Let p ( y )  be the density profile, where y is measured positive upwards from an 
appropriately defined plane in the thermocline. We assume that p'(y) < 0 
(p' + - co in the limiting case of a sheet of infinitesimal thickness) and 

P+ P(Y) P- 

P = (P- - P+)/(P- + P J  

for all y, and measure the overall strength of the thermocline by 

(1.1) 
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and the strength of a sheet with midplane at  y = yn by 

Pn = (P(Yn-)-P(Yn+))/(P(Yn-)  + ~ ( ~ m + ) l  CnP. (1.2) 

The Boussinesq approximation, which we invoke in (2.5) et seq., implies that 

(1.3a, 6) 

where equality applies in (1.3b) if and only if (as in $5) the layers are homo- 
geneous. 

Appropriate characteristic lengths are L, a characteristic thickness for the 
thermocline as a whole, 1, a characteristic thickness of the layers, Z,, a charac- 
teristic thickness of the sheets, d, the depth of the thermocline below the surface, 
D, the depth of the ocean, l/k, the reciprocal wavenumber. We assume that 

(1.4) 

except where noted, set 1, = 0 and D = co throughout the subsequent develop- 
ment, and set d = co in the initial formulation of $82 and 3. The assumption 
kl, < 1 excludes those waves associated with the structure of the sheets (these 
waves may be rendered unstable by the shear induced by the longer waves; 
see Woods (1968)). Waves for which 1, < l / k  < 1 are confined to the neighbour- 
hood of, and determined essentially by the density jump across, each of the 
individual sheets, as characterized by p,. Waves for which l/k is in the scale 
range (I, L)  are determined by the thermocline as a whole. Waves for which both 
kd @ 1 and kL < 1 may present special difficulties, especially with regard to 
the Boussinesq approximation (see Long 1965; Benjamin 1967); however, these 
difficulties do not appear to be significant in the present context. 

Let c be the wave speed of an internal wave of infinitesimal amplitude. The 
equations of motion, together with appropriate boundary conditions, yield a 
dispersion relation between k and c or, equivalently, between the dimensionless 
parameters 

a = kL and ,u = kc2//3g E l / A  (k > 0) (1.5a, b)  

1, < (l/k,Z,L) 6 d < D 

for each of a discrete spectrum of modes, say p = ,un(a), p1 > pz > ... (the 
assumption that the spectrum is discrete imposes restrictions on p'(y) that are 
trivial in the present context). In  defining p, we refer c to (pg/k) t ,  the speed of an 
interfacial wave between two semi-infinite, homogeneous liquids (Lamb 1932, 
$231).  The subscript zero is appropriately reserved for the free-surface mode, 
for which po = O(l/p) as p J 0 ;  the Boussinesq approximation, consistently 
applied, suppresses this mode and replaces the free surface by a rigid boundary. 

The dominant mode, ,u = pl, is typically the most important for the motion 
of the thermocline as a whole for small or moderate values of a, although the 
second mode, p = pz, could be the most important for certain types of excitation. 
The aforementioned result for an interfacial wave implies that c2 -+ pg /k  or, 
equivalently, pFc, -+ 1 for a thin (kL < l), deep (kd 9 1 )  thermocline. It may be 
shown (either from Sturm-Liouville theory or from the results in $ 3  below) that 
this limiting result provides an upper bound for p or, equivalently, a lower 
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bound for A. Drazin & Howard ( 1 9 6 l ) t  show that the limit is approached accord- 
ing to 

A, = l+a+O(a2) (a = kL.$O, kd 9 l ) ,  (1.6a) 

in which (1.6b) 

appears as a suitable measure of the thickness of the thermocline. 
The a priori restriction kd B 1 is, of course, untenable for sufficiently long 

waves in the dominant mode, for which c must exhibit the limiting behaviour 
(cf. Benjamin 1967) 

c 2 =  c ; { l -kL l+o(k2d2) }  ( k d J O ) ,  ( 1 . 7 ~ )  

where c; = 2f3gL0, (1.7b) 

and the lengths Lo and L, are O(d). We obtain approximations to Lo and L, 
for L/d < 1 in equations (4.7a, b).  These approximations suggest that the effects 
of finite depth on the dominant mode may be determined approximately through 
the relation 

(1.8) 

The remaining ,un tend to zero with a and are affected only quantitatively, 
rather than qualitatively, by the free surface. Sturm-Liouville theory implies 
pn = O( I/.) as 01 f co for a continuous thermocline, but if the thermocline con- 
tains N sheets of strength f3, there will be N eigenvalues, say +, z,u, . . ., Np, that 
tend to finite limits. Invoking the (readily confirmed) hypothesis that these 
sheets move independently for large a, we obtain c2 N Png/k or, equivalently, 

c2(k,  L, Lo) .I. c2(k, L, 00) (1  - exp ( -  %Lo)}. 

nP N en ( a 1 ' ~ ) .  (1.9) 

We observe that (i) the significance of (1.9) is limited by the a priori restriction 
kl, < 1, (ii) these limiting values may not be discrete, since some of the en may 
be equal, (iii) the en, and hence the n,u, may not be ordered by magnitude. 

We proceed by posing the eigenvalue problem in the form of a homogeneous 
Fredholm integral equation (in 0 2 )  and then (in Q 3) invoking the standard theory 
for such equations to obtain a quadratic functional forp that yields a lower bound 
to ,ul for an arbitrary trial function and to pn for a suitably restricted trial 
function. We also obtain an upper bound, but this is useful only for n = 1 and 
small CI, say a < 8. A comparison with the known results for a hyperbolic- 
tangent profile suggests that our results provide an efficient determination of 
,ul and ,u2 for moderate values of a, although the simplest trial functions, e.g. 
exp ( - klyl), yield approximations that are only qualitatively correct as a f co 
for a continuous thermocline. We assume kd 9 1 in $02  and 3 and give the 
required extension for finite kd in 3 4. 

-f Drazin & Howard (1961) attacked the internal-wave problem (as a special case of the 
more difficult problem of stratified shear flow) by posing the solution to the differential 
equation, (2.7) below, in the form exp (-7Clyl) x (an expansion in powers of A and a). Their 
procedure involves only integrals, as opposed to derivatives, of p(y) and therefore may be 
applied to a discontinuous thermocline. It is, however, intrinsically inefficient for non-small 
a, and the coefficients of higher powers of a become increasingly cumbersome; see, e.g. 
equation (2.12) below. 
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The simplest model of a layered thermocline assumes homogeneous layers and 
yields an essentially algebraic formulation if the number of sheets N ,  say, is 
finite. Such a model, which we describe as a sheeted thermocline, was adopted by 
early investigators of internal waves in order to avoid higher transcendental 
functions; in fact, it now appears at least as realistic as those continuous models 
that admit exact solutions (see Krauss 1966 for examples). We give two formula- 
tions for this model in $ 5 .  The first of these yields a characteristic determinant 
that has non-zero elements only along its principal and the two adjoining 
diagonals; on the other hand, it casts A,, rather than p,, in the role 
of the dominant eigenvalue and therefore is not well suited to the approximate 
determination of ,u1 if N is large. The second formulation follows the integral- 
equation formulation of § 4 and casts ,ul in the role of the dominant eigenvalue. 

The variational approximation proves to be especially efficient for a sheeted 
thermocline. In particular, the trial function exp (-klyl), which is correct only 
to zero order in the formulation of Drazin & Howard (i961),  yields an approxima- 
tion to p1 that coincides with (1 .6) as a 4 0 and with (1.9) and a 1.00, and is rather 
accurate for all intermediate a if only the central sheet is significantly stronger 
than the other sheets in the thermocline. 

2. Integral-equation formulation of the eigenvalue problem 
We consider internal waves of the form 

6(x, y, t )  = a{$(y) eik(z-ct’> (2.1) 

in an unbounded ideal incompressible fluid, where 6 is the vertical displacement 
of a particle, 4 is its complex amplitude, and x and y are Cartesian co- 
ordinates, y being positive upwards. The linearized equations of motion yield 
(Lamb 1932, $235) 

where p(y)  is the ambient density. The boundary conditions are 

(P4’)’ - (s/c2) $4 - h2P4 = 0, 

f$( -00) = +(a) = 0. 

(2.2) 

(2.3) 

Both q5 and the complex amplitude of the perturbation pressure (hydrodynamic 
plus hydrostatic), 

must be continuous across a sheet (a discontinuity in p).  

density a(y) defined by 

= P(C24’ - s$), (2.4) 

We now invoke the Boussinesq approximation. By introducing the normalized 

P = H P + f P - )  (1 - p a  P = (P--P+)/(P-+P+) rPh = P( rt 00)l, (2.5% b )  

h = &/kC2 i / p  (2.6) 

$“+ (Ako’-k2)  $3 = 0 (p < 1). (2.7) 

which implies a( 00) = 1, and the dimensionless parameter 

and neglecting Po relative to 1 in (2.2), we obtain 
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Similarly, we may replace continuity of P across a sheet by continuity of 

$b E $4’ +Aka#. (2.8) 

The error factor implied by the Boussinesq approximation is 1 + O(b)  and is 
implicit throughout the subsequent development. 

Invoking the Green’s function for the operator d2/dyz - k2, we transform the 
eigenvalue problem posed by (2.3) and (2.7) to 

n, 

which is a homogeneous Fredholm integral equation with a positive-definite 
kernel. The theory of such integral equations is classical (Courant & Hilbert 
1953, chap. 111, 3 4) and applies directly to (2.9) if a (which has a finite domain), 
rather than y (which has an infinite domain), is regarded as the independent 
variable. The dominant mode and its eigenvalue may be determined by iteration, 
but the corresponding determination of higher modes is cumbersome because of 
the requirement that the trial function for the nth mode be approximately 
orthogonal to the first n - 1 modes. 

An alternative integration of (2.7) on the hypothesis that 

x(*)(y) = e*h #(y) - Ci (&I + k a), (2.10) 

where C+ and C- are constants, yields the Volterra integral equation 

U 
x(*)(y) = 1 rt +AI (1 - eF2Hq-U)) x(*)(y) at(y) dy, (2.1 1 a) 

where the upper and lower signs are ordered. By integrating ( 2 . 1 1 ~ )  by parts, 
we obtain the equivalent form 

f m  

Requiring the Wronskian of x(+) and x(-) to vanish yields the eigenvalue equa- 
tion for A. Either (2.11 a) or (2.1lb) may be solved by iteration, starting from the 
trial solution x(*) = 1. Lighthill (1957) used analogues of ( 2 . 1 1 ~ )  and (2.11b) 
to determine solutions for homogeneous shear flows for large and small k, 
respectively (but h does not appear as an eigenvalue in this context). We remark 
that the hypothesis (2.10) is not uniformly valid as kTco for a continuously 
stratified flow (for which A - k), in consequence of which neither ( 2 . 1 1 ~ )  nor 
(2.11 b )  is useful for such flows if k is large; however, (2.10) is uniformly valid for 
a sheeted thermocline by virtue of the finite asymptotic limits of the eigenvalues 
(see (1.9)). 

Mr Yves Desaubies has carried the solution of (2.11b) through the third 
iteration and extended Drazin & Howard’s result, equation (1.6), to 

A,= l + k L + : k z / r n  J w  (l-a’)(l+cT<) 
- w  --oo 

x{(++a>) (g-a<)-apyay+o(a3) ,  (2.12) 
36 F L Y  53 
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where L is given by (1.6b), and in which the arguments of a> and u< are, 
respectively, the larger and smaller of y and y. Higher approximations lead to 
increasingly cumbersome integrals and are less efficient than the variational 
approximations of the following section. 

3. Variational approximations (kd B 1) 

( -  'J l), we Obtain 
Multiplying (2.9) through by $(y) and integrating with respect to u over 

(3.1a) ,u = J($,  k) /I ($)  f p($, k), 
where 

and 

(3.1b) 

( 3 . 1 ~ )  

The right-hand side of ( 3 . 1 ~ ~ )  is a minimum with respect to first-order variations 
of $(y) about the true solution of (2.9). Moreover, 

ru1 2 f i (6 , k )  (3.2) 

for any trial function 6(y) that is bounded and continuous, with equality if and 
only if 6 = [The statements (3.1)-(3.3) follow directly from Courant & 
Hilbert (1953, chap. 111, Q 4).] 

By invoking the Schwarz inequality 

J 2 ( $ j  k) < J (  1,2k) J(#', 0) J (  172k) 12(#), (3.3) 

we obtain the upper bound p: < J (  1,2k), with equality if and only if k = 0. 
Combining this result with the lower bound given by 6 = 1 and invoking I( I)  = 1, 
we obtain upper and lower bounds from a single function: 

J(1,k) < p l  <38(1,2k)  E $ ( k )  ( k >  0). (3.4) 

Setting 6 = 1 in ( 3 . 1 ~ )  and integrating by parts, we obtain 

F(1,k) = l-kL+k'N(k),  (3.5a) 

where .L = 4 [a ( l - a a ) d y  = L(1.6b), (3.56) 
" J  -CO 

X(k)=1S" 1" e-kly-vl(l+ a<) (1 - u') dy dy, (3.5c) 

and the arguments of u> and u< are, respectively, the larger and smaller of y 
and 7. Substituting (3.5a) into (3.4), expanding about k = 0, and comparing the 
results with (1.6), we find that both the upper and the lower bounds are exact 
to within O(lc2). 

The hypothesis (2.10) suggests that the trial function exp (-kly[) might be 
superior to 6 = 1. By transforming I and J through integration by parts, we 
obtain 5(e-k'ul, k) = (1 - K1)-l (1 - K1 - BK2 -k 2Ki+'Ki-'), (3.6a) 

where d:) = f kJo*m eTzky{l- ( i- a)n>dy (3.6b) 

and K% = Kk+' + KL'. ( 3 . 6 ~ )  

4 --m --m 
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Perhaps the simplest model of a continuous thermocline is provided by 

a(y) = tanh (yp4, (3.7) 

for which L is defined by (3.5b), and (2.7) may be transformed to the hyper- 
geometric equation with a as independent variable (Krauss 1966, pp. 35-38; 
the model was due originally to Groen). The resulting eigenvalues (for which the 
hypergeometric series terminate) are 

A, = (n- l+a) (n+a)/a (n = 1,2,  ...,a), M; = ICL. (3 .8a ,b)  

[The algebraic simplicity of the exact result (3.8) vis-&is the subsequent approxi- 
mations is atypical and is associated with the rather special properties of (3.7). 
The approximations are, of course, intended primarily for configurations for 
which exact solutions are unavailable.] Substituting (3.7) into (3.4)-(3.6), we 
obtain 

& ( l , k )  = l--a++a2$’(*a+i) (a = ICL) (3.9a) 

= 1 - cc + 0.823a2 + O(a3) (a 4 0) (3.9b) 

N #a-1+ O(a-2) (a f co), 
$(k)  = {l - 201 + 2a2$‘(a + I))* 

= 1 -a + 1.14501~ + 0(a3) 

N (3a ) -*+O(d) ,  
v and p(e-”gl, k) = I -a + +( 1 - aX)-la2,2 

= 1 -a + 0*961a2 + O(aS) 

= $a-1+ O(a-2), 

where $(z) is the logarithmic derivative of I?@), and 

(3.9c) 

( 3 . 1 0 ~ )  

(3.10b) 

(3.10 c) 

( 3 . 1 1 ~ )  

(3.11 b) 

(3.1 l c )  

x(a) = 2/3 l+t ) - l t .dt  = p(+a+l)-p(#a++).  (3.12) 

These approximations are to be compared with the exact result 

p1 = (1 +a)-l 

= i-a+a2+0(013) 

N a-lfo(a-2). 

(3.13 a)  

(3.13b) 

( 3 . 1 3 ~ )  

Graphical comparisons are given in figure 1. The upper and lower bounds given 
by (3.9) and (3.10) are less sharp than the lower bound given by (3.11) for all a.t 
The average of (3.10b) and (3.11b), 1-a+0*984a2, is sharper than (3.11b) for 
small a. The lower bounds ( 3 . 9 ~ )  and ( 3 . 1 1 ~ )  are qualitatively correct, whereas 
( 3 . 1 0 ~ )  gives the wrong order of magnitude, for large a. 

peaked than (3.7); of. (5.10)-(5.12) below. 
t The lower bound (3.5) may be sharper than (3.6) for moderate k if a(y) is less sharply 

36-2 
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kL 

FIGURE 1. The f is t  (n = 1) and second (n = 2) eigenvalues for the density distribution (3.7), 
which is sketched in the insert. The exact results, as given by (3.13) and (3.21), me compared 
with the approximations developed in $3. -, (3.13) and (3.21); ---, (3.11) and (3.20); 
---, (3.9) and (3.10). 

Asymptotic limits 
The counterparts of (3.9c), ( 3 . 1 1 ~ )  and ( 3 . 1 3 ~ )  for any continuous thermocline 
in which d(y)  has it single peak, c;, at y = 0 are 

and 

(3.14) 

(3.15) 
(3.16) 

where (3.14) and (3.15) follow from asymptotic approximations to the various 
integrals and (3.16) follows from Sturm-Liouville theory. The failure of the 
upper bound of (3.4) to give the correct order of magnitude for large a is connected 
with the fact that 00 x P i  = P 2 ( 4 ,  (3.17) 

which follows from the bilinear formula for the iterated kernel of (2.9); see 
Courant & Hilbert (1953, p. 138). 

n=l  
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Higher modes 

The lower bounds provided by (3.4) and (3.6) may be improved, and approxima- 
tions to p2, .. . ,pN obtained, by posing a trial function that contains N -  1 
arbitrary parameters, say A,, . . . , AN-1, which may be determined by minimizing 
p. The trial functions 1 and exp ( - klyl)  may be generalized through multiplica- 
tion by an Nth order polynomial in cr if the thermocline is continuous (but such 
a representation would imply discontinuities in q5, and therefore would be in- 
appropriate, for a discontinuous thermocline). The generalization of (3.6) then 
may be expressed in terms of d*), . . . , A&; in particular, 

?{( 1 + acr) e-klvl, k} 
= { 1 - K~ - K: a + $( 1 - K ~ )  a2}-1{ 1 - K~ - & K ~  + 24+)4-) 

+ (4.: - $K: - 4.: + K(~+)K:-) - &)K:+)) a + (&c, - - 44+)4-’) at}, 
(3.18 a) 

KZ = K(+)-/&). n n  (3.18b) 

The results for a symmetrical thermocline, for which cr is an odd function of y 
and K: = 0, may be simplified by separating the modes into even and odd sets. 
The trial functions for the first two modes, exp( -kJy() and aexp(-klyJ) 
(corresponding to a = 0 and a = 00, respectively, in (3.18)), yield (3.6) and 

y(oe-klgl,k) = # ( ~ - K , ) - ~ ( ~ K ~ - K ~ - K ~ )  (cr(y) = -cr(-y)). (3.19) 

where K($) and K, are defined by (3.6 b)  and (3.6 e),  and 

v 

Substituting (3.7) into (3.19), we obtain 

?( r e-kv, k )  = $a{ 1 - a + 2a2 - a( 1 + 2a2) x}-1 

x (1 -@ - a2 - a( 1 - 6 a  - a2) x - 3a2x2) (3.20a) 

= &z{ 1 - + 1.73801~ + O(a3)} (3.20b) 

N @a-l+O(a-Z), ( 3 . 2 0 ~ )  

where x is given by (3.12). This is to be compared with the exact result 

pa = a(a + 1)-1 (a + 2)-1 (3.2 1 a )  

= ta(i - + 3.2 + o(a3)) (3.21b) - a-l+O(a-2). ( 3 . 2 1 ~ )  

A graphical comparison is given in figure 1. The agreement between the approxi- 
mate and exact results is better than that for the dominant mode for moderate a 
(0.7 yo us. 2.5 yo error at a = l), but the error in ( 3 . 2 0 ~ )  is greater than that in 
( 3 . 1 1 ~ )  for large a. The approximationp(r, k) is found to be in error by 10% a t  
a = 1. 

Rayleigh approximation 

An alternative variational approximation is provided by the Rayleigh quotient 
for (2.7) and (2.3): 

(3.22) 
- 1  -m 
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However, in contrast to (3.1), which does not involve #’, (3.22) requires suitable 
estimates of both $ and $’. In  particular, the trial function exp ( - klyl), which 
renders 4‘ discontinuous at y = 0, yields 

which differs significantly from (3.6) and is in error by O(a) as a J. 0. Substituting 
(3.7) into (3.23)’ we find that the error is 21 % at a = 1, whereas the corresponding 
error for (3.11) is only 2-5 yo. 

4. Thermocline at finite depth 
By replacing the boundary condition $(a) = 0 by #(d) = 0 and modifying 

the Green’s function for the operator d2/dy2 - k2 in (2.7) accordingly, we obtain 

( 4 . 1 ~ )  

in which E(y, 7) = e--kl~-~l- e-Wd-11-7) (4.1b) 

replaces the simple exponential kernel in (2.9). Alternatively, we may obtain 
(4.1) from (2.9) by introducing the image of the original kernel in the surface. 

Proceeding as in $3 ,  we obtain the lower bound (of. (3.1)) 

( 4 . 2 ~ )  

= {J($> 4 - m4, k ) ) / W  
and the upper bound (cf. (3.3)) 

(4.2b) 

( 4 . 3 ~ )  

= {J(1 ,2k) -2J(e-k(cd-y) ,k)+K( l ,  2k))4, (4.3b) 

where I and J are defined by (3.1 b, c), and 

The upper bound is not exact in the limit k J. 0. 

respective trial functions 6 = 1 and 
The counterparts of (3.5) and (3.6) may be obtained by substituting the 

&y) = sinhk(d-y)/sinhkd (0 < y < d)  ( 4 . 5 ~ )  
= e k y  (Y < 0) (4.5b) 

into (4.2). We give explicit results only fork J. 0, in which limit q5 = 1 + O(kL,  &/a). 
Substituting q5 = 1 into (4.2a), expanding E in powers of k, and integrating by 
parts, we obtain 

( 4 . 6 ~ )  

(4.6b) 
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within an error factor of 1 +O(LLZ/d, L2/d2). Substituting p from (1.46) and g 
from (2.5) into (4.6b) and comparing the result to (1.7), we obtain the approxima- 
tions 

Lo =‘s d (1+a)”dy = I d  ( e ) 2 d y  

4 --m --m P--P+ 
( 4 . 7 ~ )  

where L is given by (1.6b) with the upper limit of integration therein replaced 
by d. Both Lo and L, tend to d as L/d 4 0. 

Those last results, together with the known result for a thin thermocline at 
finite depth, 

suggest that the effects of finite depth on the dominant mode may be determined 
approximately through the relation 

(4.9a) 

= 2LL0{1 -k(L+Lo)+O(k2L;)}, (4.9b) 

,ul + 1 - e-2kd (LL 3. O ) ,  (4.8) 

,u&, L/d) = ,ul@, 0) (1 - exp( - 2kLo)) 

which implies ( 1.8). 

5. Sheeted thermocline 
We now consider a thermocline of homogeneous layers separated by N sheets 

a t  y = yn (n = 1,2, ...,iV), each of which is characterized by the density-jump 
parameter pn. An implicit solution of (2.2) then is given by 

where $n #(yn) (YO = -00, Y N + ~  = d) .  (5.1b) 

Invoking continuity of the pressure function 9 (2.8) at yl, y2, . . ., yN and null 
conditions at yo and yN+l gives 

$n-l cosech K, + (2enh - coth K, - coth K ~ + ~ )  $n 

+#n+lcosechK,+l = 0 (n = 1,2, ..., N )  (5.2a) 
and (40 = $ N + 1 =  0, (5.26) 

where ~n = Wyn - Yn-1) (5.3) 

and en is defined by (1.2). The algebraic equations (5.2) are well suited to standard 
’ computer routines for moderate N by virtue of the sparseness of their deter- 

minant (the only non-zero elements of which lie on the principal and two adjoining 
diagonals); on the other hand, (5.2) casts A N ,  rather than pl, in the role of the 
dominant eigenvalue . 

We obtain a, complementary formulation from the integral equation (4.1). 
Substituting 

N 
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FIGURE 2. For legend see facing page. 

where H is Heaviside's step function, into (4.1) and setting y = ym, we obtain 
the algebraic equations 

$m = C e n E m n $ n ,  E m n  = E b m ,  Yn), (5 .5a7 b )  

(5.6) 

N 

n=l  

or, equivalently, 

where I is the unit matrix, E = [Em,] is a symmetric square matrix, E = [8,,en] 
is a diagonal matrix, and + = {q5J is a column matrix. It follows that the pn 
are the latent roots of EE and that ,ul is the dominant root. Standard computer 
routines are available for the determination of these latent roots, and matrix 
iteration converges on pl. 

Turning to the variational approximation, we substitute (5.4) into (3.1 b,  c )  and 
( 4 . 4 )  to obtain 

(PI - EE) + = 0, 

and (5.7 c) 
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FIGURE 2. The dominant-mode eigenvalue for the three-sheeted thermocline described by 
(5.9). The exact result, as given by (&lo), is compared with the approximations developed 
in $83 and 4. -, (5.10); ---, (5.12); ---, (3.4) and (5.11). (a) E = 3. ( b )  E = +. 

where, here and subsequently, the summations are from 1 to N .  Substituting 
(5.7) into (4.2) and letting k t co, we obtain 

which yields pn - en, as anticipated in (1.9), for that mode for which q5 peaks 
strongly at y = yn. 

The results (3.5) and (3.6) remain valid for a sheeted thermocline, but the 
direct substitution of the trial function 6 into (5.7) yields somewhat simpler 
results. The results (3.18) and (3.19) do not remain valid for a sheeted thermo- 
cline, but their counterparts may be obtained by replacing CT by its average 
value (over y = y, ? ) at y = yn, say (cT,). 

We illustrate the foregoing results for the three-sheeted thermocline de- 
scribed by 

E ,  = +( l -e ) ,e ,*( l -e )  a t  y, = -Z,O,Z (n= 1,2,3)  (5.9) 
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and y4 = co (kd 9 1). Substituting these data into either (5.2) or (5.6) and 
requiring the determinant of the equations in 951,2,3 to vanish, we obtain 

and 

where the numbering of the eigenvalues is such that ,ul > ,u2 > pa and has no 
direct correspondence with the numbering of the layers. The dominant eigen- 
value pl is plotted in figures 2(a) and (b)  for E = 8 and +. The dimensionless 
dispersion curves, (pg/L)-* w vs. a = lcL = kl( 1 - e2) ,  are plotted in figure 3 for 
several values of e in order to illustrate the sensitivity of the results to e for 
moderate values of a when L is regarded as the characteristic length. The 
dispersion curve for E = 4 (sheets of equal strength) differs from that for the 
hyperbolic-tangent model by less than 5 yo for a < 1. 

By substituting (5.9) into (5.7a, b) and invoking the trial functions 1 and 
exp ( - klyl), we obtain the variational approximations 

$( 1, k) = e2++( 1 -e)2+ 2e( 1 - e) e-k'+ *( 1 -e)2e--2kl (5.11) 

(5.12) 

which are compared with the exact result (5.10) in figure 2 for e = 8 and e = 4. 
The approximation (5.12) is scarcely distinguishable from the exact result (on 
the scale of figure 2) for 4 < e < 1 ; on the other hand, the approximation is less 
satisfactory (except for small kl) for 0 < E < 4, in which range the outer sheets 
are stronger than the central sheet. The lower bound provided by (5.11) is 
inferior to that of (5.12) if e is appreciably greater than but is superior if E < + ; 
indeed, it is indistinguishable (on the scale of figure 2) from the exact result for 
E = 3, presumably because it is asymptotically exact in this special case. The 
upper bound provided by (5.11) in conjunction with (3.4) is sharp only for small k. 
Invoking the trial function $n = (cn)exp (- klynl) yields the exact result (5.10b) 
for the second mode and does not provide a test of the variational approximation. 

As a h a 1  example, we consider the five-sheeted thermocline described by 

~%=4,&>#,&,$ at ynl l=-3 ,  -1207133, 

ap = 5 (n = 1,2,3,4,5) ,  (5.13) 

which approximates the summer thermocline in the Mediterranean (Woods 1968, 
figure 2) with I = 5 rn and ,8 = 1-1 x (using a coefficient of thermal expansion 
for sea water of 2.5 x lO-4/'C); see figure 4, in which the bars represent the 
observed sheets. Substituting (5.13) into (5.4), (1.6b), and ( 4 . 7 ~ ~  b) ,  we obtain 
(L, A,, L,) = (1-73,4*13,6.05) 1. The first two eigenvalues, as obtained from (5.6), 
are plotted in figure 5 for d = 51 and d = 03 in order to illustrate the effects of 
the free surface. These effects are qualitative for the dominant mode and only 
quantitative for the higher modes. The approximation ( 4 . 9 ~ )  cannot be dis- 
tinguished from the exact result on the scale of figure 5 and exhibits a maximum 
error of 2 yo at kl = 0.1. The dispersion curves for the five modes are plotted in 
figure 6; the asymptotic coalescence of the curves for the second and third modes 
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FIGURE 3. The dispersion curves. - , three-sheeted thermocline described by (5.9) ; 

--- , continuous thermocline described by (3.7). 
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FIGURZ 4. The summer thermocline near M d t a  (0630, 24 August 1966), as reported by 
Woods (1968). The solid curve and the bars give the measured temperature and temperature 
gradient. The dashed curve gives the approximation described by (6.13) with I = 5m and 
p = 1.1 x 10-3. 
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FIGURE 5 .  The first two eigenvalues for the five-sheeted mode of the thermocline described 
by (5.13). -, d = 51; ---, d = co; ---, variational approximations. 

and those for the fourth and fifth modes is a consequence of the symmetry of the 
thermocline with respect to its midplane. 

The variational approximations to p l  and p,, as obtained by substituting the 
trial functions (4.5) and (a),exp ( -  kly,l), respectively, into (5.4) and (5.7) are 
also plotted in figure 5. The second mode is strictly antisymmetric only for 
kd 9 1, in consequence of which the variational approximation to p2 does not 
provide a lower bound to the exact value for small kl. The upper bound to pl 
provided by (4.3) is comparable in accuracy with the corresponding bound in 
figure 2 (a). 
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FIGURE 6. The dispersion curves for the five-sheeted thermocline described by (5.13). 
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